In this paper we have derived the transport equation for the joint distribution function of velocity and magnetic field. Various properties of constructed distribution functions have been proved
Keywords: Distribution Functions, Hydromagnetic Turbulence, Continuity Equation, Coincidence Property, Reduction Property. Introduction

Two major and distinct areas of investigations in non equilibrium statistical mechanics are the kinetic theory of gases and statistical theory of fluid turbulence. Various analytical theory of turbulence have been given by E. Hopf (1952), R.H. Kraichnan (1969), S. Edward (1964), and J.

Ajay Kumar Sonkar
Deptt of Mathematics, K.N.Govt.P.G.College, Gyanpur, Bhadohi, U.P.

M. K. Madhukar Head,
Deptt of Mathematics, M.M.College, Bikram, Patna, Bihar

Herring (1964). Further attempts in this direction were made by T.S. Lundgren (1967). He derived a hierarchy of coupled equations for multipoint turbulent velocity distribution functions which resemble with BBGKY hierarchy of equations in the kinetic theory of gases D. Montgomery (1976) presented a framework for a systematic kinetic theory of inviscid fluid turbulence originating from the Liouville equation for the Fourier coefficients of the fluid variables. Real and imaginary part of these Fourier coefficients play the role in somewhat abstract way, that particle coordinates (position and moment) play in the BBGKY theory. This kinetic equation satisfies conservation laws, positive definiteness of spectral densities and H. theorem. Kishore (1977, 1984) constructed and studied distribution functions in the statistical theory of MHD and ordinary turbulence. Pope derived the transport equation for the joint probability density function of velocity and scalars which provide a good basis for modeling turbulent reactive flows. Closure approximations have been presented for the terms involving the fluctuating pressure viscosity and diffusive mixing.
involving the fluctuating pressure viscosity and diffusive mixing.
Dixit $(1989,1994,2010)$ considered the joint distribution function of velocity and Alfven velocity in MHD turbulence. In this paper a hierarchy of distribution functions for simultaneous velocity and magnetic field have been derived. The simple case of one dimensional MHD turbulence has been considered to provide a good basis for the statistical study. Various properties of constructed distribution functions such as reduction, Separation and coincidence have been discussed. The transport equations for one and two point joint distribution functions have been derived and closure has been obtained by a simple relaxation model.

Basic Equation

We start with one dimensional extended Burger's Equation for hydro magnetic turbulence given as (Cf. Kishore and Singh 1984).

$$
\begin{align*}
\partial \mathrm{u} / \partial \mathrm{t}+\mathrm{u} \partial \mathrm{u} / \partial \mathrm{x}-3 \mathrm{~h} \partial \mathrm{~h} / \partial \mathrm{x}-\mathrm{v} \partial^{2} \mathrm{u} / \partial \mathrm{x}^{2} & =0 \tag{2.1}\\
\partial \mathrm{~h} / \partial \mathrm{t}+\mathrm{u} \partial \mathrm{~h} / \partial \mathrm{x}-\mathrm{h} \partial \mathrm{u} / \partial \mathrm{x}-\lambda \partial^{2} \mathrm{~h} / \partial \mathrm{x}^{2} & =0 \\
\text { With the assumption }<\mathrm{u}(\mathrm{x}, \mathrm{t}) & >=\langle\mathrm{h}(\mathrm{x}, \mathrm{t})>=0
\end{align*}
$$

where u is velocity fluctuation, h magnetic field fluctuation, is kinematics viscosity and is the magnetic diffusivity.

Formulation of the Problem

We consider large identical fluids, each member being and infinite incompressible conducting fluid in turbulent state. No external electric or magnetic field is used to supply the electromagnetic energy in the flow field, but it arises only due to hydro dynamical motion. The fluid and Alfven velocities v and h are randomly distributed functions of position and time and satisfy the equations of motion and continuity given by (2.1) and (2.2). Different members of ensemble are subjected to different initial conditions, and our aim is to find out a way by which we can determine the ensemble averages at the initial time. Certain microscopic properties of conducting

Periodic Research

$$
\begin{aligned}
& \int \delta(u-v) d v= \begin{cases}1 & \text { at the point } u=v \\
0 & \text { else where }\end{cases} \\
& \delta\left(u^{(1)}-\mathrm{v}^{(1)}\right) \delta\left(\mathrm{g}^{(1)}-\mathrm{h}^{(1)}\right) \quad \text { is distribution }
\end{aligned}
$$ function for one member of the ensemble and therefore, $\delta_{1}^{(1)}$ is the average distribution function for one member of the ensemble and therefore, $\delta_{1}^{(1)}$ is the average distribution function given by.

$$
\begin{align*}
\mathrm{F}_{2}^{(1,2)}= & <\delta\left(\mathbf{u}^{(1)}-\mathrm{v}^{(1)}\right) \delta\left(\mathrm{g}^{(1)}-\mathrm{h}^{(1)}\right) \delta\left(\mathbf{u}^{(2)}-\mathrm{v}^{(2)}\right) \mathbf{x} \\
& \times \delta\left(\mathbf{y}^{(2)}-\mathbf{h}^{(2)}\right)> \tag{4.3}
\end{align*}
$$

where $\mathrm{V}^{(1)} \mathbf{h}^{(2)}$ are the velocities at the points $\mathrm{X}^{(1)}$ and $X^{(2)}$ at time t, etc. Similarly, we can define an infinite number of multi-point bivariate distribution functions $F_{3}^{(1,2,3)}, F_{4}^{(1,2,3,4)}$ etc.
The distribution functions so constructed possess the following properties.

(i) Reduction Properties

Integration with respect to pair of variables at one point lowers the order of distribution function by one, for example,

$$
\begin{aligned}
& \iint \mathrm{F}_{1}^{(1)} \mathrm{d} \mathrm{v}^{(1)} \mathrm{dh}^{(1)}=1 \\
& \iint \mathrm{~F}_{2}^{(1,2)} \mathrm{d} \mathrm{v}^{(2)} \mathrm{dh}^{(2)}=\mathrm{F}_{1}^{(1)} \\
& \iint \mathrm{F}_{3}^{(1,2,3)} \mathrm{dv} \\
& \\
& (3) \mathrm{dh}^{(3)}=\mathrm{F}_{2}^{(1,2)}
\end{aligned}
$$

etc. Also the integration with respect to any one of the variables, reduces the number of delta-functions in the distribution function by one, for example,

$$
\begin{aligned}
& \int \mathrm{F}_{1}^{(1)} \mathrm{d} \mathrm{v}^{(1)}=<\delta\left(\mathrm{g}^{(1)}-\mathrm{h}^{(1)}\right)> \\
& \int \mathrm{F}_{1} \mathrm{dh}^{(1)}=<\delta\left(\mathrm{u}^{(1)}-\mathrm{v}^{(\mathrm{v})}\right)>
\end{aligned}
$$

and

$$
\int \mathrm{F}_{2}^{(1,2)} \mathrm{dh}^{(2)}=<\delta\left(\mathrm{u}^{(1)}-\mathrm{v}^{(1)}\right) \delta\left(\mathrm{g}^{(1)}-\mathrm{h}^{(1)}\right) \delta\left(\mathrm{u}^{(2)}-\mathrm{v}^{(2)}\right)>
$$

Abstract

etc.

(ii) Separation Property

If the two points in the flow field are 'far apart' of each other. The pairs of variables (v, h) at these points should be statistically independent of each other i.e.

$$
\lim _{\left|\mathrm{x}^{(2)}-\mathrm{x}^{(1)}\right| \rightarrow \infty} \mathrm{F}_{2}^{(1,2)}=\mathrm{F}_{1}^{(1)} \mathrm{F}_{1}^{(2)}
$$

and similarly,

Periodic Research

$$
\lim _{\left\lvert\, \begin{array}{l}
\mathrm{x}^{(2)}-\mathrm{x}^{(1)} \mid \rightarrow \infty \\
\mathrm{x}^{(3)}-\mathrm{x}^{(2)} \mid \rightarrow \infty
\end{array}\right.} \mathrm{F}_{3}^{(1,2,3)}=\mathrm{F}_{2}^{(1,2)} \quad \mathrm{F}_{1}^{(3)}
$$

(iii) Coincidence Property

When the two points coincide in the flow field,

$$
\mathrm{v}^{(2)}=\mathrm{v}^{(1)} \text { and } \mathrm{h}^{(2)}=\mathrm{h}^{(1)}
$$

also since

$$
\iint \mathrm{F}_{2}^{(1,2)} \mathrm{dv}^{(2)} \mathrm{dh}^{(2)}=\mathrm{F}_{1}^{(1)}
$$

we have
$\lim _{\mathrm{x}^{(2)} \rightarrow \mathrm{x}^{(1)}} \mathrm{F}_{2}^{(1,2)}=\mathrm{F}_{1}^{(1)} \delta\left(\mathrm{v}^{(2)}-\mathrm{v}^{(1)}\right) \delta\left(\mathrm{h}^{(2)}-\mathrm{h}^{(1)}\right)$
and similarly
$\lim _{\mathrm{x}^{(3)} \rightarrow \mathrm{x}^{(1)}} \mathrm{F}_{3}^{(1,2,3)}=\mathrm{F}_{2}^{(1,2)} \delta\left(\mathrm{v}^{(3)}-\mathrm{v}^{(1)}\right) \delta\left(\mathrm{h}^{(3)}-\mathrm{h}^{(1)}\right)$

etc.

(iv) Symmetry Conditions

(v) Incompressibility Conditions

$$
\begin{aligned}
& \text { (1) } \iint \frac{\partial \mathrm{F}_{\mathrm{n}}^{(1,2 \ldots \ldots \ldots \ldots . . n}}{\partial \mathrm{x}^{(\mathrm{r})}} \mathrm{v}^{(\mathrm{r})} \mathrm{dv}^{(\mathrm{r})} \mathrm{dh}^{(\mathrm{r})}=0 \\
& \text { (2) } \iint \frac{\partial \mathrm{F}_{\mathrm{n}}^{(1,2 \ldots \ldots \ldots \ldots . . n)}}{\partial \mathrm{x}^{(\mathrm{r})}} \mathrm{h}^{(\mathrm{r})} \mathrm{dv}^{(\mathrm{r})} \mathrm{dh}^{(\mathrm{r})}=0
\end{aligned}
$$

Continuity Equations Expressed in Terms of the

 Distribution FunctionsAn infinite number of continuity equations can be derived in the same way as for ordinary turbulence (Hopf, 1952) which will be satisfied if satisfied for initial values of the distributed functions. Taking ensemble averages of equations (2.1) and (2.2), we have

$$
\begin{aligned}
0 & =\left\langle\partial v^{(1)} / \partial x^{(1)}\right\rangle=\left\langle\partial / \partial x^{(1)} v^{(1)} \iint F_{1}^{(1)} d v^{(1)} d h^{(1)}\right\rangle \\
& =\partial / \partial x^{(1)}\left\langle v^{(1)} \iint F_{1}^{(1)} d v^{(1)} d h^{(1)}\right\rangle=\partial / \partial x \iint v^{(1)} F_{1}^{(1)} d v^{(1)} d h^{(1)} \\
& =\partial / \partial x^{(1)} \iint d v^{(1)} F_{1}^{(1)} d v^{(1)} d h^{(1)}=\iint \partial F^{(1)} / \partial x^{(1)} v^{(1)} d v^{(1)} d h^{(1)}
\end{aligned}
$$

and similarly

$$
0=\iint \partial \mathrm{F}_{1}^{(1)} / \partial \mathrm{x}^{(1)} \mathbf{h}^{(1)} \mathrm{d} \mathrm{v}^{(1)} \mathrm{dh}^{(1)}
$$

which are the first order continuity equation in which only one point distribution is involved. In a similar way, second order continuity equations can be derived and are found to be

$$
\begin{aligned}
& \partial / \partial x^{(1)} \iint h^{(1)} F_{2}^{(1,2)} d v^{(1)} d h^{(1)}=0 \\
& \partial / \partial x^{(1)} \iint v^{(1)} F_{2}^{(1,2)} d v^{(1)} \operatorname{dh}^{(1)}=0
\end{aligned}
$$

and the nth order Continuity equations are

$$
\partial / \partial x^{(1)} \iint v^{(1)} F_{n}^{(1,2 \ldots \ldots . . n)} d v^{(1)} \operatorname{dh}^{(1)}=0
$$

and

$$
\partial / \partial x^{(1)} \iint h^{(1)} F_{n}^{(1,2 \ldots \ldots \ldots n)}{d v^{(1)}}^{(1)} h^{(1)}=0
$$

the continuity equations are symmetric in their arguments i.e.

$$
\begin{aligned}
& \partial / \partial x^{(r)} \iint h^{(r)} F_{n}^{(1,2 \ldots \ldots \ldots \ldots n)} d v^{(r)} d h^{(r)}=\partial / \partial x^{(s)} \iint h^{(s)} \\
& \mathrm{F}_{\mathrm{n}}^{(1,2 \ldots \ldots \ldots \mathrm{~s} \ldots \ldots \ldots . . \ldots \ldots \ldots \mathrm{n})} \mathrm{dv}^{(\mathrm{s})} \mathrm{dh}^{(\mathrm{s})}
\end{aligned}
$$

Equations for the Evolution of Joint Distribution

 FunctionsThe time evolution of

$$
\mathrm{F}_{1}^{(1)}=\left\langle\delta\left(\mathrm{u}^{(1)}-\mathrm{v}^{(1)}\right) \delta\left(\mathrm{h}^{(1)}-\mathrm{g}^{(1)}\right)\right\rangle \text { is given by }
$$

$$
\begin{align*}
& \partial / \partial \mathrm{t} \mathrm{~F}_{1}^{(1)}=\partial / \partial \mathrm{t}\left\langle\delta\left(\mathrm{u}^{(1)}-\mathrm{v}^{(1)}\right) \delta\left(\mathrm{h}^{(1)}-\mathrm{g}^{(1)}\right)\right\rangle \\
& =\partial / \partial \mathrm{t}\left\langle\left[\delta\left(\mathrm{u}^{(1)}-\mathrm{v}^{(1)}\right) \delta\left(\mathrm{h}^{(1)}-\mathrm{g}^{(1)}\right)\right]\right\rangle \\
& =\left\langle\partial / \partial \mathrm{t} \delta\left(\mathrm{u}^{(1)}-\mathrm{v}^{(1)}\right) \delta\left(\mathrm{h}^{(1)}-\mathrm{g}^{(1)}\right)\right\rangle \\
& +\left\langle\delta\left(\mathrm{u}^{(1)}-\mathrm{v}^{(1)}\right) \partial / \partial \mathrm{t} \delta\left(\mathrm{~h}^{(1)}-\mathrm{g}^{(1)}\right)\right\rangle \\
& =\left\langle\left\{\delta u^{(1)} / \partial t \partial / \partial v \delta\left(u^{(1)}-v^{(1)}\right)\right\} \delta\left(h^{(1)}-\mathrm{g}^{(1)}\right)\right\rangle \\
& +\left\langle-\delta\left(u^{(1)}-v^{(1)}\right) \partial h^{(1)} / \partial t \partial / \partial g^{(1)} \delta\left(h^{(1)}-g^{(1)}\right)\right\rangle \\
& =\left\langle-\delta\left(h^{(1)}-\mathrm{g}^{(1)}\right)\left\{-\mathrm{u}^{(1)} \partial \mathrm{u}^{(1)} / \partial \mathrm{x}^{(1)}+3 h^{(1)} \partial \mathrm{h}^{(1)} / \partial \mathrm{x}^{(1)}\right.\right. \\
& \left.+v \partial / \partial x^{(1)} \partial / \partial x^{(1)} u^{(1)} \cdot \partial / \partial v^{(1)} \delta\left(u^{(1)}-v^{(1)}\right)\right\}> \\
& +<-\delta\left(u^{(1)}-v^{(1)}\right) \quad\left\{-u^{(1)} \partial h^{(1)} / \partial x^{(1)}\right. \\
& +h^{(1)} \partial u^{(1)} / \partial x^{(1)} \\
& +\lambda \partial / \partial \mathrm{x}^{(1)} \partial / \partial \mathrm{x}^{(1)} \mathrm{h}^{(1)} . \partial / \partial \mathrm{g}^{(1)} \delta\left(\mathrm{h}^{(1)}-\mathrm{g}^{(1)}\right)> \\
& =\left\langle\mathrm{u}^{(1)} \delta\left(\mathrm{h}^{(1)}-\mathrm{g}^{(1)}\right) \partial \mathrm{u}^{(1)} / \partial \mathrm{x}^{(1)} \partial / \partial \mathrm{v}^{(1)} \delta\left(\mathrm{u}^{(1)}-\mathrm{v}^{(1)}\right)\right\rangle \tag{6.1}\\
& +3<-\delta\left(h^{(1)}-g^{(1)}\right) h^{(1)} \partial h^{(1)} / \partial x^{(1)} \partial / \partial v^{(1)} \delta\left(u^{(1)}-v^{(1)}\right)> \\
& \text { - }\left\langle v \delta\left(h^{(1)}-g^{(1)}\right) \partial / \partial x^{(1)} \partial / \partial x^{(1)} u^{(1)} \partial / \partial v^{(1)} \delta\left(u^{(1)}-v^{(1)}\right)\right\rangle \\
& +\left\langle\delta\left(u^{(1)}-v^{(1)}\right) u^{(1)} \partial h^{(1)} / \partial x^{(1)} \partial / \partial g^{(1)} \delta\left(h^{(1)}-\mathrm{g}^{(1)}\right)\right\rangle \\
& +\left\langle-\delta\left(u^{(1)}-v^{(1)}\right) h^{(1)} \partial u^{(1)} / \partial x^{(1)} \partial / \partial g^{(1)} \delta\left(h^{(1)}-g^{(1)}\right)\right\rangle
\end{align*}
$$

$$
\begin{gather*}
+\lambda<-\delta\left(u^{(1)}-v^{(1)}\right)\left\{\partial / \partial x^{(1)} \partial / \partial x^{(1)} h^{(1)}\right\} \partial / \partial g^{(1)} \\
\delta\left(h^{(1)}-\mathbf{g}^{(1)}\right)> \tag{6.2}
\end{gather*}
$$

By calculation
$=\left\langle\mathrm{u}^{(1)} \delta\left(\mathrm{h}^{(1)}-\mathrm{g}^{(1)}\right) \partial \mathrm{u}^{(1)} / \partial \mathrm{x}^{(1)} \partial / \partial \mathrm{v}^{(1)} \delta\left(\mathrm{u}^{(1)}-\mathrm{v}^{(1)}\right)\right\rangle$
$=-\left\langle\mathrm{u}^{(1)} \delta\left(\mathrm{h}^{(1)}-\mathrm{g}^{(1)}\right) \partial / \partial \mathrm{x}^{(1)} \delta\left(\mathrm{u}^{(1)}-\mathrm{v}^{(1)}\right)\right\rangle$
(6.3)
$\left.<\delta\left(\mathrm{u}^{(1)}-\mathrm{v}^{(1)}\right) \mathrm{u}^{(1)} \partial \mathrm{h}^{(1)} / \partial \mathrm{x}^{(1)} \partial / \partial \mathrm{g}^{(1)} \delta\left(\mathrm{h}^{(1)}-\mathrm{g}^{(1)}\right)\right\rangle$
$=\left\langle\delta\left(\mathrm{u}^{(1)}-\mathrm{v}^{(1)}\right) \mathrm{u}^{(1)} \partial / \partial \mathrm{x}^{(1)} \delta\left(\mathrm{h}^{(1)}-\mathrm{g}^{(1)}\right)\right\rangle$
Adding (6.3) and (6.4) we have
$-\mathbf{u}^{(1)} \partial / \partial \mathrm{x}^{(1)} \mathrm{F}_{1}^{(1)}$
$\left\langle-v \delta\left(\mathrm{~h}^{(1)}-\mathrm{g}^{(1)}\right) \partial / \partial \mathrm{v}^{(1)} \delta\left(\mathrm{u}^{(1)}-\mathrm{v}^{(1)}\right) \partial / \partial \mathrm{x}^{(1)} \partial / \partial \mathrm{x}^{(1)} \mathrm{u}^{(1)}\right\rangle$
$=-\partial / \partial u^{(1)} \lim _{x^{(2)} \rightarrow x^{(1)}} \partial / \partial x^{(2)} \partial / \partial x^{(2)} \int u^{(1)} \mathrm{F}_{2}^{(1,2)} \mathrm{du}^{(2)} d h^{(2)}$
$\left.\lambda<-\delta\left(\mathrm{u}^{(1)}-\mathrm{v}^{(1)}\right) \partial / \partial \mathrm{g}^{(1)} \delta\left(\mathrm{h}^{(1)}-\mathrm{g}^{(1)}\right) \partial / \mu \mathrm{x}^{(1)} \partial / \partial \mathrm{x}^{(1)} \mathrm{h}^{(1)}\right\rangle$ $=-\lambda \partial / \partial h^{(1)} \lim _{\left.x^{2}\right) \rightarrow x^{(1)}} \partial / \partial x^{(1)} \partial / \partial x^{(2)} \int h^{(2)} F_{2}^{(1,2)} \mathrm{du}^{(2)} \mathrm{dh}^{(2)}$
$3<-\delta\left(\mathrm{h}^{(1)}-\mathrm{g}^{(1)}\right) \mathrm{h}^{(1)} \partial \mathrm{h}^{(1)} / \partial \mathrm{x}^{(1)} \partial / \partial \mathrm{v}^{(1)} \delta\left(\mathrm{u}^{(1)}-\mathrm{u}^{(1)}\right)>$
$=-3 h^{(1)} \partial \mathbf{h}^{(1)} / \partial \mathbf{u}^{(1)} \partial / \partial \mathbf{x}^{(1)} F_{1}^{(1)}$
and

$$
\begin{align*}
& <-\delta\left(\mathrm{u}^{(1)}-\mathrm{v}^{(1)}\right) \mathrm{h} \partial \mathrm{u}^{(1)} / \partial \mathrm{x}^{(1)} \partial / \partial \mathrm{g}^{(1)} \delta\left(\mathrm{h}^{(1)}-\mathrm{g}^{(1)}\right)> \tag{6.8}\\
& =-\mathrm{h}^{(1)} \partial \mathrm{u}^{(1)} / \partial \mathrm{h}^{(1)} \partial / \partial \mathrm{x}^{(1)} \mathrm{F}_{1}^{(1)} \tag{6.9}
\end{align*}
$$

Putting equations (6.3) (6.9) in equation (6.2) we have
$\partial \mathrm{F}^{(1)} / \partial \mathrm{t}+\mathrm{u}^{(1)} \partial \mathrm{F}^{(1)} / \partial \mathrm{x}^{(1)}+3 \mathrm{~h}^{(1)} \partial \mathrm{h}^{(1)} / \partial \mathrm{u}^{(1)} \partial / \partial \mathrm{x}^{(1)} \mathrm{F}_{1}^{(1)}$
$+\partial / \partial u^{(1)} \lim _{x^{(2)} \rightarrow x^{(1)}} v \partial / \partial x^{(2)} \partial / \partial x^{(2)} \int u^{(1)} F_{2}^{(1,2)} d u^{(2)} \mathrm{dh}^{(2)}$
$+h^{(1)} \partial u^{(1)} / \partial h^{(1)} \partial / \partial x^{(1)} F_{1}^{(1)}+\lambda \partial / \partial h^{(1)} \lim _{x^{(2)} \rightarrow x^{(1)}} \partial / \partial x^{(1)}$
$\partial / \partial u^{(2)} \int h^{(2)} F_{2}^{(1,2)} d u^{(2)} d h^{(2)}=0$
Similarly a transport equation for two point joint distribution function F can be derived as

$$
\begin{aligned}
& \partial \mathrm{F}_{2}^{(1,2)} / \mathrm{t}+\left(\mathrm{v}^{(1)} \partial / \partial \mathrm{x}^{(1)}+\mathrm{v}^{(2)} \partial / \partial \mathrm{x}^{(2)}\right) \mathrm{F}_{2}^{(1,2)} \\
&+ 3 \mathrm{~h}^{(1)} \partial \mathrm{h}^{(1)} \partial / \partial \mathrm{v}^{(1)} \partial / \partial \mathrm{x}^{(1)} \mathrm{F}_{2}^{(1,2)} \\
&+3 \mathrm{~h}^{(2)} \partial \mathrm{h}^{(2)} / \partial \mathrm{v}^{(2)} \partial / \partial \mathrm{x}^{(2)} \mathrm{F}_{2}^{(1,3)}+\mathrm{h}^{(1)} \partial \mathrm{v}^{(1)} / \partial \mathrm{h}^{(1)}
\end{aligned}
$$

Periodic Research

$$
\begin{align*}
& \partial / \partial x^{(1)} F_{2}^{(1,2)} \\
& +h^{(2)} \partial v^{(2)} / \partial h^{(2)} \partial / \partial x^{(2)} F_{2}^{(1.3)}+v\left(\partial / \partial v^{(1)} \lim _{\left.x^{3}\right) \rightarrow x^{1(1)}}+\partial / \partial v^{(2)} \lim _{x^{3} \rightarrow x^{(2)}}\right) \\
& \partial / \partial x^{(3)} \partial / \partial x^{(3)} \int v^{(3)} \mathrm{F}_{3}^{(1,2,3)} \mathrm{dv}^{(3)} \mathrm{dh}^{(3)}+\lambda\left(\partial / \partial \mathrm{h}^{(1)} \lim _{\mathrm{x}^{(3)} \rightarrow \mathrm{x}^{(1)}}+\right. \\
& \left.\partial / \partial h^{(2)} \lim _{\left.x^{3}\right) \rightarrow x^{(1)}}\right) \partial / \partial \mathrm{x}^{(2)} \int \mathrm{h}^{(2)} \mathrm{F}_{2} \mathrm{du}{ }^{(2)} \mathrm{dh}^{(2)}=0 \tag{6.11}
\end{align*}
$$

Closure Scheme and Discussion

In order to close the Transport Equations for the joint distribution functions, some approximations are required. Here closer is obtained by

$$
\begin{equation*}
\mathrm{F}_{2}^{(1,2)}=(1+\theta) \mathrm{F}_{1}^{(1)} \mathrm{F}_{1}^{(2)} \tag{7.1}
\end{equation*}
$$

and
$\mathrm{F}_{3}^{(1,2,3)}=(1+\theta)^{2} \mathrm{~F}_{1}^{(1)} \mathrm{F}_{1}^{(2)} \mathrm{F}_{1}^{(3)}$
Where θ is correlation coefficient.
When $\theta=0$. That is the case in which magnetic diffusivity is so small as to be negligible in comparison to kinematic viscosity and in this case instability to small magnetic perturbation is to be expected. The relevant equations are.

$$
\begin{aligned}
\partial \mathrm{F}^{(1)} / \partial \mathrm{t} & +\mathrm{u}^{(1)} \partial \mathrm{F}^{(1)} / \partial \mathrm{x}^{(1)}+3 \mathrm{~h}^{(1)} \partial{ }^{(1)} / \partial \mathbf{u}^{(1)} \partial / \partial \mathrm{x}^{(1)} \mathrm{F}^{(1)} \\
& +\partial / \partial \mathbf{u}^{(1)} \lim _{\mathrm{x}^{(2)} \rightarrow \mathrm{x}^{(1)}} v \partial / \partial \mathrm{x}^{(2)} \partial / \partial \mathrm{x}^{(2)}
\end{aligned}
$$

$\int \mathrm{u}^{(1)} \mathrm{F}_{2}^{(1,2)} \mathrm{du}{ }^{(2)} \mathrm{dh}^{(2)}+\mathrm{h}^{(1)} \partial \mathrm{u}^{(1)} / \partial h^{(1)} \partial / \partial \mathrm{x}^{(1)}=\mathrm{F}_{1}^{(1)}=0$
(7.3)
and
$\partial \mathrm{F}_{2}^{(1,2)} / \partial \mathrm{t}+\left(\mathrm{v}^{(1)} \partial / \partial \mathrm{x}^{(1)}+\mathrm{v}^{(2)} \partial / \partial \mathrm{x}^{(2)}\right) \mathrm{F}_{1}^{(1,2)}+$
$3 h^{(1)} \partial h^{(1)} / \partial v^{(1)} \partial / \partial x^{(1)} F_{2}^{(1,2)}+3 h^{(2)} \partial h^{(2)} / \partial v^{(2)}$
$\partial / \partial \mathbf{x}^{(2)} \mathrm{F}_{2}^{(1,3)}+\mathrm{h}^{(1)} \partial \mathrm{v}^{(1)} / \partial h^{(1)} \partial / \partial \mathrm{x}^{(1)} \mathrm{F}_{2}^{(1,2)}+$
$+h^{(2)} \partial v^{(2)} / \partial h^{(2)} \partial / \partial x^{(2)} F_{2}^{(1,3)}+v\left(\partial / \partial v^{(1)} \lim _{x^{(3)} \rightarrow x^{(1)}}+\right.$
$+\partial / \partial v^{(2)} \lim _{x^{(3)} \rightarrow x^{(2)}} \partial / \partial x^{(3)} \partial / \partial x^{(3)} \int v^{(3)} F_{3}^{(1,2,3)} \operatorname{dv}^{(3)} \mathrm{dh}^{(3)}$
In weakly turbulent medium, the case when magnetic diffusivity equals the kinematics viscosity turns out to be interesting because in most of the useful fluids electrical conductivity is not very high and in this case the relevant equations are
$\partial \mathrm{F}_{1} / \partial \mathrm{t}+\mathrm{u}^{(1)} \partial \mathrm{F}^{(1)} / \partial \mathrm{x}^{(1)} 3 \mathrm{~h}^{(1)} \frac{\partial \mathrm{h}^{(1)}}{\partial \mathrm{u}^{(1)}} \partial / \partial \mathrm{x}^{(1)} \mathrm{F}_{1}^{(1)}$ $+\partial / \partial u^{(1)} \lim _{x^{(2)} \rightarrow x^{(1)}} v \partial / \partial x^{(2)} \partial / \partial x^{(2)} u^{(1)} F_{2}^{(1,2)} d u^{(2)} \operatorname{dh}^{(2)}+$ $+h^{(1)} \partial u^{(1)} / \partial h^{(1)} \partial / \partial x^{(1)} F_{2}^{(1,2)}+v \partial / \partial h^{(1)} \lim _{x^{(2)} \rightarrow x^{(1)}} \partial / \partial x^{(1)}$
$\partial / \partial x^{(2)} h^{(2)} F_{2}^{(1,2)} \mathrm{du}^{(2)} \mathrm{dh}^{(2)}=0$
and
$\partial \mathrm{F}_{2}^{(1,2)} / \partial \mathrm{t}+\left(v^{(1)} \partial / \partial \mathrm{x}^{(1)}+\mathrm{v}^{(2)} \partial / \partial \mathrm{x}^{(2)}\right) \mathrm{F}_{2}^{(1,2)}+$
$+3 h^{(1)} \partial h^{(1)} / \partial v^{(1)} \partial / \partial x^{(1)} \mathrm{F}_{2}^{(1,2)}+3 h^{(2)} \partial h^{(2)} / \partial v^{(2)} \partial / \partial \mathrm{x}^{(2)} \mathrm{F}_{2}^{(1.3)}+$
$+\mathrm{h}^{(1)} \partial \mathrm{r}^{(1)} / \partial \mathrm{h}^{(1)} \partial / \partial \mathrm{x}^{(1)} \mathrm{F}_{2}^{(1,2)}+\mathrm{h}^{(2)} \partial \mathrm{r}^{(2)} / \partial \mathrm{h}^{(2)} \partial / \partial \mathrm{x}^{(2)} \mathrm{F}_{2}^{(1,3)}$
$+v\left[\left(\partial / \partial v^{(1)} \lim _{x^{(3)} \rightarrow x^{(1)}}+\partial / \partial v^{(2)} \lim _{x^{(3)} \rightarrow x^{(2)}}\right) \partial / \partial x^{(3)} \partial / \partial x^{(3)} \int v^{(3)}\right.$
$F_{3}^{(1,2,3)} \mathrm{dv}^{(3)} \mathrm{dh}^{(3)}+\left(\partial / \partial h^{(1)} \lim _{x^{(3)} \rightarrow \mathrm{x}^{(2)}}+\partial / \partial h^{(2)} \lim _{\mathrm{x}^{(3)} \rightarrow \mathrm{x}^{(2)}}\right)$
$\left.\partial / \partial \mathrm{x}^{(2)} \int \mathrm{h}^{(2)} \mathrm{F}_{2} \mathrm{du}^{(2)} \mathrm{dh}^{(2)}\right]=0$
In order to close the transport equation for the joint bivariate distribution functions approximations are required. If we consider the collection of ionized particles that is in plasma turbulence case, it can be provided closure form easily by decomposing $\mathrm{F}_{2}^{(1,2)}$ as $\mathrm{F}_{1}^{(1)} \mathrm{F}_{1}^{(2)}$. But such type of approximations can be possible when there is no interaction or correlation between two particles. We decompose $\mathrm{F}_{2}^{(1,2)}$ as.

$$
\mathrm{F}_{2}^{(1,2)}=\mathrm{F}_{1}^{(1)} \mathrm{F}_{1}^{(1)}+\theta \mathrm{F}_{1}^{(2)} \mathrm{F}_{1}^{(2)}
$$

and

$$
\mathrm{F}_{3}^{(1,2,3)}=(1+\theta)^{2} \quad \mathrm{~F}_{1}^{(1)} \mathrm{F}_{1}^{(2)} \mathrm{F}_{1}^{(3)}
$$

Here θ is correlation coefficient between the particles. If there is no correlation between two particles θ will be zero and distribution function can be decomposed in usual way. Here we are considering such type of approximations only to provide closed form to the equations i.e. to approximate two point equations as one point equations. $F(v, h)$ contains all the statistical information about the velocity at each point, therefore a turbulence model to determine the Reynolds stresses is not needed. Since $F(v, h)$ is one point statistics, the length scale information is also not needed.

References

1. Hopf, E. (1952) J. of Rotational Mech. Anla., 1, 87.
2. Edward, S. (1964) J. Fluid Mech., 18, 239.
3. Dixit, T. et al. (2010) ARJPS $13(1,2) 83$.
4. Dixit, T. (1989) Astrophys, Space Sci. 158, 114.
5. Dixit, T. and Sunil Kumar(1994) Indian Academy of Mathematics, 16, 31
6. Herring, J.R. (1965) Physics of Fluids, 8, 2219
7. Kishore, N and Singh, S.R. 1984) Astrophysics and Space Sci., 104, 121.
8. Kraichnan, R.H. 1959) J. Fluid Mech., 5, 497
9. Lundgren, T.S. (1967) Physics of Fluids, 10, 967.
