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Introduction 

 Two major and distinct areas of investigations in non equilibrium 
statistical mechanics are the kinetic theory of gases and statistical theory of 
fluid turbulence. Various analytical theory of turbulence  have been given 
by E. Hopf (1952), R.H. Kraichnan (1969), S. Edward  (1964), and J. 
Herring (1964). Further attempts in this direction were made by T.S. 
Lundgren (1967). He derived a hierarchy of coupled equations for 
multipoint turbulent velocity distribution functions which resemble with 
BBGKY hierarchy of equations in the kinetic theory of gases D. 
Montgomery (1976) presented a framework for a systematic kinetic theory 
of inviscid fluid turbulence originating from the Liouville equation for the 
Fourier coefficients of the fluid variables. Real and imaginary part of these 
Fourier coefficients play the role in somewhat abstract way, that particle co-
ordinates (position and moment) play in the BBGKY theory. This kinetic 
equation satisfies conservation laws, positive definiteness of spectral 
densities and H. theorem. Kishore (1977, 1984) constructed and studied 
distribution functions in the statistical theory of MHD and ordinary 
turbulence. Pope derived the transport equation for the joint probability 
density function of velocity and scalars which provide a good basis for 
modeling turbulent reactive flows. Closure approximations have been 
presented for the terms involving the fluctuating pressure viscosity and 
diffusive mixing.  
involving the fluctuating pressure viscosity and diffusive mixing.  
 Dixit (1989,1994,2010) considered the joint distribution function of 
velocity and Alfven  velocity in MHD turbulence. In this  paper a hierarchy 
of distribution functions for simultaneous velocity and magnetic field have 
been derived. The simple case of one dimensional MHD turbulence has 
been considered to provide a good basis for the statistical study. Various 
properties of constructed distribution functions such as reduction, 
Separation and coincidence have been discussed. The transport equations 
for one and two point joint distribution functions have been derived and 
closure has been obtained by a simple relaxation model.  
Basic Equation  

 We start with one dimensional extended Burger’s Equation for 
hydro magnetic turbulence given as (Cf. Kishore and Singh 1984).  

2 2u / t u u / x - 3h  h / x u / x   =  0                                     (2.1) 

2 2h / t u h / x - h  u / x h / x   =  0                                     (2.2) 

 With the assumption 
   u x,t  >   =   <h x,t    =  0  

 where u is velocity fluctuation, h magnetic field fluctuation, is 
kinematics viscosity and  is the magnetic diffusivity. 
Formulation of the Problem  

 We consider large identical fluids, each member being and infinite 
incompressible conducting fluid in turbulent state. No external electric or 
magnetic field is used to supply the electromagnetic energy in the flow 
field, but it arises only due to hydro dynamical motion. The fluid and Alfven 
velocities v and h are randomly distributed functions of position and time 
and satisfy the equations of motion and continuity given by (2.1) and (2.2). 
Different members of ensemble are subjected to different initial conditions, 
and our aim is to find out a way by which we can determine the ensemble 
averages at the initial time. Certain microscopic properties of conducting 

Abstract 

          In this paper we have derived the transport equation for the joint 
distribution function of velocity and magnetic field. Various properties of 
constructed distribution functions have been proved 
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fluids, such as total energy, total pressure, stress 
tensor which are nothing but ensemble averages at a 
particular time, can be determined with the help of the 
bivariate distribution functions (defined as the 
averaged distribution functions with the help of Dirac-
delta functions. Our present aim is to construct the 
bivariate distribution functions, study its properties 
and derive an equation for its evolution.  
Bivariate Distribution Functions in Mhd 
Turbulence and their Properties  

 Lundgren (1967) has  considered the study 
of flow field on the basis of one variable character 
only (namely, the fluid velocity v), but we can study it 
for two or more variables as well. In MHD turbulence 
we may consider the fluid velocity as well as the 
Alfven velocity of each point of the flow field. Then, 
corresponding to each point of the flow field, we have 
two measurable characteristics. We represent the two 
variables by v and h and denote the pair of variables 
at the points 

                     1 2 3 n 1 1 2 2 n n
x ,x ,x ........x  as   v ,h   v ,h ..........v , h  

at a fixed instant of time. It is possible that same pair 
may occur more than once; therefore, we simplify the 
problem by an assumption that the distribution is 
discrete (in the sense that no pairs occur more than 
once). Symbolically we can express the bivariate 
distribution as 
 

 

Instead of considering discrete points in the flow field, 
if we consider distribution (spatial continuity) of the 
variables v and h over the entire flow field, statistical 
behaviour of the fluid may be described by the 
distribution function F (v,h) which is normalized so 
that  

  F v,h  dvdh    =      1       (4.1)  

Where the integration ranges over all the possible 
values of v and h. We shall make use of the same 
normalization condition for the discrete distributions 
also. We now define the hierarchy of (v-h) distribution 
functions in terms of ensemble average. The one 
point distribution function 

 
      1 1 1

1F   v ,h  

defined so that  

 
          1 1 1 1 1

1F    v ,   h   dv dh  

is the probability that the fluid and Alfven velocities at 

a time t are in the element 
 1

dv about 
 1

v and 
 1

dh

about 
 1

h ,  is given by  

 

                  1 1 1 1 1 1 1 1
F x , v ,h , t  = u v   g h   

         (4.2)  

Where δ is the direct-delta function defined as  

 

 
1      at the point u=v

u v dv =
0      else where 


  


  

         1 1 1 1
u v  g h     is distribution 

function for one member of the ensemble and 

therefore, 
 1

1  is the average distribution function for 

one member of the ensemble and therefore, 
 1

1  is 

the average distribution function given by. 
 

                1,2 1 1 1 1 2 2

2F  = < u v   g h   u v x     

     2 2
 y h       

    (4.3)  

where 
   1 2

v   h  are the velocities at the points 
 1

x  

and 
 2

x  at time t, etc. Similarly, we can define an 
infinite number of multi-point bivariate distribution 

functions 
   1,2,3 1,2,3,4

3 4F ,   F  etc.  

The distribution functions so constructed possess the 
following properties. 
(i) Reduction Properties  

 Integration with respect to pair of variables at 
one point lowers the order of distribution function by 
one, for example,  

 
     1 1 1

1F  dv  dh  = 1  

 
       1,2 2 2 1

2 1F  dv  dh  = F  

 
       1,2,3 3 3 1,2

3 2F  dv  dh   = F  

etc. Also the integration with respect to any one of the 
variables, reduces the number of delta-functions in 
the distribution function by one, for example,  

 
        1 1 1 1

1F  dv  = < g h    

 
      1 1 v

1F  dh  = < u v    

and 

                  1,2 2 1 1 1 1 2 2

2F  dh  = < u v   g h u v      
 
etc. 
(ii)  Separation Property  

 If the two points in the flow field are ‘far 
apart’ of each other. The pairs of variables (v,h) at 
these points should be statistically independent of 
each other i.e. 

 
   

     

2 1

1,2 1 2

2 1 1
x x

lim   F  = F   F
 

 

and similarly,  

               1 1 2 2 n n
v ,h ,    v ,  h   .......  v ,h
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   

   

     

2 1

3 2

1,2,3 1,2 3

3 2 1
x x

x x

lim   F  = F   F
 

 

 

(iii)  Coincidence Property  

 When the two points coincide in the flow 
field,  

 
       2 1 2 1

v v   and   h h   

also since  

 
       1,2 2 2 1

2 1F  dv  dh  = F  

we have  

   

             
2 1

1,2 1 2 1 2 1

2 1
x x

lim  F F   v v  h h


    

and similarly  

   

             
3 1

1,2,3 1,2 3 1 3 1

3 2
x x

lim  F F   v v  h h


    

etc. 
(iv) Symmetry Conditions  

 
   1,2.......r........s........n 1,2.......s...........r..............n

n nF F  

(v) Incompressibility Conditions  

  
 

 

     
1,2.............n

r r rn

r

F
1   v dv  dh 0

x





  

  
 

 

     
1,2.............n

r r rn

r

F
2   h dv  dh 0

x







Continuity Equations Expressed in Terms of the 
Distribution Functions  

An infinite number of continuity equations can 
be derived in the same way as for ordinary turbulence 
(Hopf, 1952) which will be satisfied if satisfied for 
initial values of the distributed functions. Taking 
ensemble averages of equations (2.1) and (2.2), we 
have  

 
             1 1 1 1 1 1 1

10 v / x   =    < / x v  F dv dh      
                 1 1 1 1 1 1 1 1 1

1 1  / x <v  F dv dh   =  / x v F dv dh      
                   1 1 1 1 1 1 1 1 1 1

1  / x  dv F dv dh   =  F / x v dv dh     
and similarly  

 
         1 1 1 1 1

10 F / x h dv dh ;    

which are the first order continuity equation 
in which only one point distribution is involved. In a 
similar way, second order continuity equations can be 
derived and are found to be  
 

         1 1 1,2 1 1

2  / x  h   F   dv   dh   =  0    

 
         1 1 1,2 1 1

2  / x  v   F   dv   dh   =  0    

and the nth order Continuity equations are  

 
         1 1 1,2........n 1 1

n  / x  v   F   dv   dh   =  0    

and 
 

         1 1 1,2........n 1 1

n  / x  h   F   dv   dh   =  0    

the continuity equations are symmetric in their 

arguments i.e. 

             r r 1,2......r......s.....n r r s S

n  / x  h   F   dv   dh   =  / x h      

      
     1,2.........s.........r.........n s  s

nF  dv dh  

Equations for the Evolution of Joint Distribution 
Functions 

The time evolution of  

           1 1 1 1 1

1F   =  <  u v  h g      is given by  

 

           1 1 1 1 1

1/ t   F    =   / t  < u v  h g        

         1 1 1 1
                   =   / t < [ u v  h g ]      

         1 1 1 1
                   =   < / t  u v  h g                  

         1 1 1 1
                   +   <  u v  / t  h g        

            1 1 1 1 1
                   =   <  u / t / v  u v  h g                    

             1 1 1 1 1 1
                   +   <  - u v  h  / t / g  h g          

                1 1 1 1 1 1 1 1
                   =   <  - h g  -u  u / x 3h  h / x              

            1 1 1 1 1 1
                   +    /  x  / x  u . / v u v          

          1 1 1 1 1
                   +   < -  u v            -u h / x     

                      
     1 1 1

 h  u / x  
            1 1 1 1 1 1

                   +   / x  / x  h . /  g h g        

                     (6.1)    

                  1 1 1 1 1 1 1 1
u  h g u / x  / v  u v            

                 1 1 1 1 1 1 1 1
                   +   3<- h g  h h / x   / v u v        

 

                 1 1 1 1 1 1 1 1
                   -   <   h g  / x / x  u  / v u v           

                 1 1 1 1 1 1 1 1
                   +   <  u v  u  h / x   / g h g        

                 1 1 1 1 1 1 1 1
                   +   < - u v  h  u / x   / g h g        
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             1 1 1 1 1 1
                   +    < - u v   / x   / x  h  / g        

 
    1 1

h g             (6.2) 

By calculation  

                 1 1 1 1 1 1 1 1
  u h g  u / x  / v u v          

             1 1 1 1 1 1
  - u h g  / x  u v        

                                                                         (6.3)  

                 1 1 1 1 1 1 1 1
u v  u h  / x  / g h g         

             1 1 1 1 1 1
   u v  u / x  h g                  (6.4)  

Adding (6.3) and (6.4) we have  
     1 1 1

1u   / x  F        

(6.5)  

                 1 1 1 1 1 1 1 1
h g  / v  u v / x  / x u           

 

   

           

2 1

1 2 2 1 1,2 2 2

2
x x

  -  / u  lim  / x  / x  u F du dh


           

(6.6) 

                 1 1 1 1 1 1 1 1
u v  / g  h g / x  / x h            

 

   

           

2 1

1 1 2 2 1,2 2 2

2
x x

  - /  h  lim / x  / x h  F du dh


       
                                                                 (6.7)  

                 1 1 1 1 1 1 1 1
3 h g  h h / x / v  u u         

         1 1 1 1 1

1 -3h  h / u  / x  F         

(6.8) 
and 

               1 1 1 1 1 1 1
u v  h u / x  / g h g         

         1 1 1 1 1

1 - h  u / h / x  F                          (6.9)  

Putting equations (6.3) ----------- (6.9) in equation (6.2) 
we have  

                 1 1 1 1 1 1 1 1 1

1F / t u  F / x 3h h / u / x F         

 

   

           

2 1

1 2 2 1 1,2 2 2

2
x x

+  / u  lim  / x  / x  u F du dh


      
           

   

 

2 1

1 1 1 1 1 1 1

1
x x

h u /  h  / x   F / h lim / x


        

         2 2 1,2 2 2

2  / u  h F du dh 0        (6.10)    

Similarly a transport equation for two point joint 
distribution function F can be derived as  

            1,2 1 1 2 2 1,2

2 2F / t + v / x v / x  F       

 
         1 1 1 1 1,2

23h h / v / x  F       

 
               2 2 2 2 1,3 1 1 1

23h h / v / x  F h v / h       

 
   1 1,2

2/ x  F 

           

   

 

   3 1 3 2

2 2 2 2 1,3 1 2

2
x x x x

h v / h / x  F ( / v  lim / v lim )
 

           

             

   3 1

3 3 3 1,2,3 3 3 1

3
x x

/ x / x v F dv dh ( / h lim


       
 

   

       

3 1

2 2 2 2 2

2
x x

/ h lim ) / x h F du dh 0


      

                       (6.11) 
Closure Scheme and Discussion  

In order to close the Transport Equations for 
the joint distribution functions, some approximations 
are required. Here closer is obtained by  

  
       1,2 1 2

2 1 1F 1  F   F                     (7.1) 

and  

         21,2,3 1 2 3

3 1 1 1F 1  F   F   F                        (7.2) 

Where θ is correlation coefficient.  
When θ = 0. That is the case in which magnetic 
diffusivity is so small as to be negligible in comparison 
to kinematic viscosity and in this case instability to 
small magnetic perturbation is to be expected. The 
relevant equations are.  

                 1 1 1 1 1 1 1 1 1

1F / t u F / x 3h h / u / x F           

 
 

   

   

2 1

1 2 2

x x

 / u  lim   / x  / x


         

 
                 1 1,2 2 2 1 1 1 1 1

2 1u F du dh h u / h / x F 0                                                                   

(7.3)  
and 

           1,2 1 1 2 2 1,2

2 1F / t (v / x v / x ) F          

               1 1 1 1 1,2 2 2 2

23h h / v / x F 3h h / v        

             2 1,3 1 1 1 1 1,2

2 2/ x F h v / h / x F         

           

   3 1

2 2 2 2 1,3 1

2
x x

 h v / h / x F  ( / v  lim


         

 

   

           

3 2

2 3 3 3 1,2,3 3 3

3
x x

/ v  lim ) / x / x v F dv dh


      
                                      (7.4)  
In weakly turbulent medium, the case when magnetic 
diffusivity equals the kinematics viscosity turns out to 
be interesting because in most of the useful fluids 
electrical conductivity is not very high and in this case 
the relevant equations are  

       
 

 

   
1

1 1 1 1 1 1

l 11

h
F / t + u F / x 3h  / x F

u


     


 

 

   

           

2 1

1 2 2 1 1,2 2 2

2
x x

 / u  lim    / x  / x u  F du dh


        

           

   

 

2 1

1 1 1 1 1,2 1 1

2
x x

 h   u / h  / x  F  / h lim  / x


         

         2 2 1,2 2 2

2 / x  h  F du dh 0                      (7.5)  

and 
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           1,2 1 1 2 2 1,2

2 2 F / t (  / x v  / x ) F         

                   1 1 1 1 1,2 2 2 2 2 1,3

2 2 3h h / v  / x  F  + 3h h / v /  x F         

                   1 1 1 1 1,2 2 2 2 2 1,3

2 2 h v / h  / x  F  + h v / h /  x F        

 

   

 

   

     

3 1 3 2

1 2 3 3 3

x x x x

  [( / v  lim / v lim ) / x  / x v
 

          
       

   

 

   3 2 3 2

1,2,3 3 3 1 2

3
x x x x

F dv dh ( / h lim / h lim )
 

    

       2 2 2 2

2/ x  h  F  du  dh  ] = 0                 (7.6) 

In order to close the transport equation for the joint 
bivariate distribution functions approximations are 
required. If we consider the collection of ionized 
particles that is in plasma turbulence case, it can be 
provided closure form easily by decomposing 

     1,2 1 2

2 1 1F  as  F  F .  But such type of approximations 

can be possible when there is no interaction or 
correlation between two particles. We decompose 

 1,2

2F  as.  

 
         1,2 1 1 2 2

2 1 1 1 1F  = F   F  +  F  F  

and 

 
         21,2,3 1 2 3

3 1 1 1F  = 1+   F  F  F  

 Here  is correlation coefficient between the 

particles. If there is no correlation between two 

particles
 
 will be zero and distribution function can be 

decomposed in usual way. Here we are considering 
such type of approximations only to provide closed 
form to the equations i.e. to approximate two point 
equations as one point equations. F (v,h) contains all 
the statistical information about the velocity at each  
point, therefore a turbulence model to determine the 
Reynolds stresses is not needed. Since F(v,h) is one 
point statistics, the length scale information is also not 
needed.  
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